An improved superconvergence error estimate for the LDG method
نویسندگان
چکیده
منابع مشابه
An improved collocation method based on deviation of the error for solving BBMB equation
In this paper, we improve b-spline collocation method for Benjamin-Bona-Mahony-Burgers (BBMB) by using defect correction principle. The exact finite difference scheme is used to find defect and the defect correction principle is used to improve collocation method. The method is tested on somemodel problems and the numerical results have been obtained and compared.
متن کاملA Numerical Study of Uniform Superconvergence of Ldg Method for Solving Singularly Perturbed Problems
In this paper, we consider the local discontinuous Galerkin method (LDG) for solving singularly perturbed convection-diffusion problems in oneand two-dimensional settings. The existence and uniqueness of the LDG solutions are verified. Numerical experiments demonstrate that it seems impossible to obtain uniform superconvergence for numerical fluxes under uniform meshes. Thanks to the implementa...
متن کاملAn Optimal-Order Error Estimate for the Discontinuous Galerkin Method
In this paper a new approach is developed for analyzing the discontinuous Galerkin method for hyperbolic equations. For a model problem in R2, the method is shown to converge at a rate 0(hn+l) when applied with nth degree polynomial approximations over a semiuniform triangulation, assuming sufficient regularity in the solution.
متن کاملAn Improved Motion Vector Estimation Approach for Video Error Concealment Based on the Video Scene Analysis
In order to enhance the accuracy of the motion vector (MV) estimation and also reduce the error propagation issue during the estimation, in this paper, a new adaptive error concealment (EC) approach is proposed based on the information extracted from the video scene. In this regard, the motion information of the video scene around the degraded MB is first analyzed to estimate the motion type of...
متن کاملAn Error Estimate for the Isoperimetric Deficit
A four part dissection and rearrangement provides a new proof of the isoperimetric inequality in the plane as well as a new approach to Bonnesen-type error estimates for the isoperimetric deficit of compact convex sets and of star bodies that are centrally symmetric with respect to the origin. An isoperimetric inequality in R bounds the area (or related functional) of a compact set by some func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2015
ISSN: 0168-9274
DOI: 10.1016/j.apnum.2015.07.005